

Course Outcomes (CO)- Engineering Mathematics –III (BTINC301)

Course Description:

The course is intended to provide understanding of concepts of mathematics and its application to engineering. This course introduces the student to the second and higher order differential equations and their solution, function of a complex variable. This course is aimed study concept of

CO1	Solve engineering problems using the principles of solution of differential equations.
CO2	Understand analytic function of a complex variable and able to apply Cauchy integral theorem and residue theorem to solve contour integrations.
CO3	Use Fourier transforms and its inverse in practical applications of electronics engineering.
CO4	Apply Laplace transform and its inverse to solve initial value and other related problems.
CO5	Know basic statistical techniques required for electronics engineering.
CO6	To Under Stand Functions of Complex Variables (Integral calculus)

Course Outcomes (CO)- Sensors and Transducers (BTINC302)

Course Description:

This course is aimed study concept of various unit operations in industry as well as understanding of different process and apply different instrumentation for control of this various processes to optimum level.

CO1	To expose the students to various sensors and transducers for measuring mechanical quantities.
CO2	To understand the specifications of sensors and transducers.
CO3	To learn the basic conditioning circuits for various sensors and transducers.
CO4	To introduce advances in sensor technology.
CO5	Appreciate the characteristics of transducers
CO6	Identify different sensors and transducers required and able to apply them.

Course Outcomes (CO)- Network Analysis And Synthesis (BTINC303)

Course Description:

This course is mainly for Undergraduate Second Year Instrumentation engineering students, which will introduce and explain the fundamental concepts in the field of Instrumentation engineering. Network analysis means find the currents and voltages in all parts of a given network which contains passive components and voltage/current sources

CO1	Understand the concept of network topology and apply it for various formulations.
CO2	Apply basic circuital laws and simplify the network using reduction techniques and theorems.
CO3	Understand time domain analysis and evaluate transient response, Steady state response
CO4	Understand frequency domain analysis, use Fourier transform and Laplace transform for analysing circuits.
CO5	Define network functions and Synthesize networks using Foster and Cauer Forms.
CO6	Explain the concept of Laplace transform & can apply to solve D.E and integral equation.

Course Outcomes (CO)- Analog Electronics (BTINES304)

Course Description:

This course provides knowledge about basic analog electronics components to familiarize students with construction, their working, operation, performance and applications.

CO1	Analyze the characteristics, testing and controls and applications of transistors.
CO2	Design, analyze and test multi-stage amplifiers, feedback amplifiers.
CO3	Apply the analog electronics components for designing circuits.
CO4	Concept of negative and positive feedback applications.
CO5	The characteristics of operational amplifiers and apply it in various circuits.
CO6	Familiarize with construction and working principal of BJT and Field Effect Transistor and its applications.

Course Outcomes (CO) - Digital Electronics (BTINC401)

Course Description:

This course provides knowledge about discrete time control system and components. It also provides the knowledge state space analysis, representation and useful transformations in state space analysis and design.

CO1	To Work with a variety of number systems and numeric representations, including signed and unsigned binary, hexadecimal, 2'scomplement.
CO2	To introduce basic postulates of Boole an algebra and show the correlation between Boolean expression.
CO3	To introduce the methods for simplifying Boolean expressions.
CO4	To outline the formal procedures for the analysis and design of combinational circuits and sequential circuits.
CO5	Design digital clock and frequency counter circuits.
CO6	Understand operation basics of flip-flops, registers, decoders, encoders, multiplexers and de-multiplexers.

Course Outcomes (CO)- Feedback Control System (BTINC402)

Course Description:

This course is aimed study concept of various unit operations in industry as well as understanding of different process and apply different instrumentation for control of this various processes to optimum level.

CO1	Understand control system concept, basic control configurations and types of control systems.
CO2	Review of Laplace transform and learn how to find mathematical model of system.
CO3	Perform Time domain analysis of control systems and able to get knowledge about stability of control systems.
CO4	Analyse frequency response analysis of control systems.
CO5	Apply and design compensators
CO6	Demonstrate proficiency in programming language related to basic control concepts.

Course Outcomes (CO)- Industrial Management and Economics (BTHM403)

Course Description:

This course is aimed study concept of various unit operations in industry as well as understanding of different process and apply different instrumentation for control of this various processes to optimum level.

CO1	To understand the basics of industrial management.
CO2	Learn principles of various elements of management.
CO3	Increase ability to learn the Economics of engineering.
CO4	Value added quality product for economical growth through technological development.
CO5	Appreciate the concepts in industrial management and safety

Course Outcomes (CO)- Elements of Electrical and Electronics Measurements (BTINBS404)

Course Description:

This course provides knowledge about measuring instruments and standards. It also gives introduction to recorders, oscilloscopes, errors in measurements. It also covers the active and passive electronic components measuring circuits.

CO1	understand the concept of measurement system.
CO2	apply and design analog measuring devices
CO3	identify, formulate and solve a problem of electrical and electronic measurement.
CO4	Familiarize with different measurement techniques.
CO5	Understand the operation of instruments in the electrical and electronic engineering applications
CO6	Gain proficiency in the use of common measuring instruments.

Course Outcomes (CO)- Signals and System (BTINPE405)

Course Description:

The course is designed to provide the fundamental concepts in signals and systems. It covers applications of these fundamentals for designing, filtering, sampling, communications and feedback systems analysis. It also focuses mathematical transformations used in signal analysis.

CO1	Identify and represent the type of signals and systems and Perform elementary operations on signals
CO2	Classify systems based on their properties
CO3	Understand fundamental properties of LTI systems and be able to determine response of the system for given input
CO4	Interpret and analyze signal and report results.
CO5	Analyse and design of an LTI systems using Fourier transform and Laplace transform
CO6	Understand the concept of probability and statistical properties of signals.

P. S. G. V. P. Mandal's D. N. Patel College of Engineering, Shahada Department of Instrumentation Engineering

Course Outcomes (CO)- Process Loop Components (BTINC501)

Course Description:

The objective of the course is to provide students with a firm grasp of the essential principles of control system components

CO1	Apply the knowledge of the control system components for controlling various Industrial parameters.
CO2	Able to identify, formulate and solve a problem using hydraulic, electrical & pneumatic system.
CO3	Analyse the process characteristics and apply suitable controller to that process.
CO4	Correctly select type and size of control valves for industrial use.
CO5	To introduce the PID Controllers and programmable logic controllers (PLC)
CO6	To introduce the Auxiliary components

Course Outcomes (CO)- Microprocessor and Microcontroller (BTINC502)

Course Description:

To provide solid foundation on the fundamentals of microprocessors and applications, interfacing the external devices to the processor according to the user requirements thus, enabling to create novel products and solutions for real time problems. This course is an introduction to the basic principles and fundamental concepts of microprocessor system. The student will be able to integrate these concepts into their electronics designs for other courses where Control can be achieved via microprocessor.

CO1	Review the latest technology regarding design of integrated circuits.
CO2	Review the fundamental concepts of a microprocessor and microcontroller.
CO3	Design and debug programming of microprocessors and microcontrollers.
CO4	Identify and select an appropriate microcontroller as well as development tools for given applications
CO5	Understand the basic architecture, interfacing and interrupts of 8085.
CO6	Understand the basic architecture, peripheral functions of 8085.

Course Outcomes (CO) - Digital Signal Processing (BTINC503)

Course Description:

This course is aimed at introducing the fundamentals of Digital Signal, Digital Filters and Application of Digital signal processing to undergraduate students. The objective of the course is to use the knowledge of Digital signal Processing in real Instrumentation applications.

CO1	Ability to apply the various programming techniques on DSPs
CO2	Ability to determine the frequency, steady state and transient response of LTI systems.
CO3	Ability to apply the DFT and FFT methods for various signals
CO4	Solve a given problem for analyze Signals in the frequency domain using various transforms.
CO5	Ability to design FIR and IIR filters using different techniques.
CO6	Ability to study of real application of DSP in Instrumentation area.

Course Outcomes (CO) - Linear Technique (BTINPE 504 B)

Course Description:

The objective of the course is to provide students with a firm grasp of the essential principles of Operational Amplifiers and its applications as well as signal sources and signal analysis.

CO1	Apply basic Knowledge of science and engineering subject to understand the concept, working and application of Operational Amplifier.
CO2	Understand concept of negative and positive feedback applications using Operational Amplifiers.
CO3	Understand the characteristics of operational amplifiers.
CO4	Understand fundamentals and design of different signal sources and voltage regulators
CO5	Understand the block diagram and applications astable, Monostable multivibrater
CO6	Understand Voltage regulators and Active filters

Course Outcomes (CO)- Control System (BTINOE505 A)

Course Description:

This course is aimed at introducing the fundamentals of Digital Control System, Z plane Analysis and Design of Discrete Time Control System by conventional methods to undergraduate students. The objective of the course is to use the knowledge of DCS, State Space Analysis of Discrete Time Control System and Pole Placement and Observer Design

CO1	Study and Analysis of Non-linear Control Systems
CO2	Ability to study of Proportional (P), Integral (I) & amp; Derivative (D)controller,
CO3	Ability to study of Concept of state & state variable
CO4	Design and investigate State Space Analysis of Control Systems.
CO5	Find Controllability & observability of linear system by using Kalman's test.
CO6	Introduction to control system design, Compensation technique-Cascade & amp; Feedback, Compensation network

Course Outcomes (CO) - Digital Control System (BTINC601)

Course Description:

This course provides knowledge about discrete time control system and components. It also provides the knowledge state space analysis, representation and useful transformations in state space analysis and design.

CO1	Study and Analysis of Digital Control Systems
CO2	Ability to study of Z plane Analysis of Discrete-time Control Systems
CO3	Plot response and stability analysis of the Discrete Time Control System for different standard signals.
CO4	Design and investigate State Space Analysis of Control Systems.
CO5	design discrete time control system by conventional methods.
CO6	Estimate, analyze, and improve the stability of control systems.

Course Outcomes (CO)- Programmable logic controller and Distributed Control System (BTINC602)

Course Description:

To provide the Fundamentals of PLC, PLC programming concepts, PLC applications To provide in-depth understanding of DCS, SCADA, and Computer Controlled Systems which are used in automation of various machines, processes and systems in industries

CO1	To provide the Fundamentals of PLC.
CO2	PLC programming concepts.
CO3	PLC applications To provide in-depth understanding of DCS.
CO4	PLC applications To provide in-depth understanding of systems in industries SCADA.
CO5	Computer Controlled Systems which are used in automation of various machines.
CO6	Computer Controlled Systems which are used in automation of various processes.

Course Outcomes (CO)- Power Electronics and Drives (BTINC603)

Course Description:

The objective of the course is to provide students with a firm grasp of the essential principles of power electronics circuits and their classifications. The course aimed at acquiring an understanding of basic principles, operation, performance and applications of power electronics circuits. The subject is helpful in the study of technological aspects such as utilization semiconductor devices and technology in power systems, industrial drives, automation and control.

CO1	To review principle of construction, operation and characteristics of basic semiconductor
	devices.
CO2	To understand and analyze performance of controlled and uncontrolled converters.
CO3	To understand and analyze performance of DC to DC converters. DC to AC converters.
CO4	To understand and analyze performance of AC voltage controllers.
CO5	To understand Various methods and their circuit diagrams and working.
CO6	Industrial Applications of Thyristor controller

Course Outcomes (CO)- Instrumentation in Unit Operations(BTINPE604 A)

Course Description:

This course is aimed study concept of various unit operations in industry as well as understanding of different process and apply different instrumentation for control of this various processes to optimum level.

CO1	List chemical processes, units, and the corresponding equipments.
CO2	Make material balances and energy balance on unit operations and processes.
CO3	Understanding of the degrees of freedom analysis and its significance.
CO4	Get knowledge of basic principles of fluid mechanics
CO5	Analyze fluid flow problems with the application of the momentum and energy equations
CO6	Select suitable size reduction equipment, separation equipment and proper conveying medium.

Course Outcomes (CO)- Fiber Optics Laser Instrumentation (BTINOE 605 B)

Course Description:

Basic concepts of optical fibers and their properties. Fiber Optic based measurement Systems. Lasers and their uses in different industrial purposes

CO1	Obtain the knowledge needed to perform fiber-optic communication system engineering
	calculation.
CO2	Apply knowledge to modern fiber-optic systems.
CO3	Evaluate real time systems
CO4	Understand the most recent literature in the field of fiber-optic communications.
CO5	Understand Types of laser Instruments
CO6	Understand application of laser Instruments in real life of instrumentation system

Course Outcomes (CO)- Process Instrumentation and Control (BTIEC701)

Course Description:

This course is aimed study concept of various unit operations in industry as well as understanding of different process and apply different instrumentation for control of this various processes to optimum level.

CO1	Summarize and classify characteristics of various control loops
CO2	Design and apply appropriate control for different control loops.
CO3	Familiarize with the advances in process instrumentation.
CO4	Apply the principles and practices for Process control
CO5	Apply various control techniques to processes
CO6	Design multivariable control scheme.

Course Outcomes (CO)- Instrumentation System Design (BTIEC702)

Course Description:

This course is aimed study concept of Control Valve Sizing concepts and its usual terms for applications like liquid, gas, vapour and flashing fluids, Control room and Control Panel details and The process of Electronic product design

CO1	Design and Analyse CV Sizing
CO2	Identify various Control panels and Control Room details
CO3	Design of Electronic product.
CO4	Understand Signal Conditioning for Transducers.
CO5	Understand and Design of signal conditioning circuits
CO6	Understand to Printed circuit board design guidelines, general components layout
	scheme

Course Outcomes (CO)- Industrial Project Planning and Estimation

(**BTIEC703**)

Course Description:

The objective of the course is to provide students with a firm grasp of the essential principles of project, planning, controlling, estimation and economics.

CO1	Apply the knowledge of the documentation for project execution.
CO2	Able to do the documentation for procurement of instruments/equipment.
CO3	Apply the knowledge for project, planning, controlling, estimation and economics.
CO4	Do higher studies in field of project, planning, controlling, estimation and economic developments.
CO5	To understand importance, characteristics, principles and levels of management
CO6	To understand Cost Management, PERT and CPM

Course Outcomes (CO)- Image Processing (BTIEPE704A)

Course Description:

The fundamentals of digital image processing and algorithms that are used. Useful skill base that would allow them to carry out further study should they be interested and to work in the field. The students are expected to develop a foundation that can be used as the basis for further study and research in this field. The syllabus gives great emphasis on basic principles as well as more advanced techniques for image enhancement, segmentation, morphological operations etc.

CO1	Review the fundamental concepts of a digital image processing system.
CO2	Analyze images in the frequency domain using various transforms.
CO3	Evaluate the techniques for image enhancement and image restoration.
CO4	Interpret Image compression standards
CO5	Interpret image segmentation and representation techniques
CO6	Ability to study of real application of DIP in Instrumentation area.

Course Outcomes (CO)- Analytical Instrumentation (BTIEOE705A)

Course Description:

It is the course which provides the knowledge of different analytical methods used in chemical analysis and role of instrumentation in it.

CO1	Understand the capabilities and limitations of analytical instruments.
CO2	Select and apply an analytical instrument in the physical, chemical and biological world and appreciate the role of instrumentation.
CO3	Learn the advances in analytical instrumentation.
CO4	To understand principles of instrumental analysis
CO5	To study the theory and design of analytical instruments
CO6	To develop problem-solving skills applicable to real-world problems

Course Outcomes (CO)- Control Engineering (BTIEPE801A)

Course Description:

This course shall introduce the fundamentals of modeling and control of linear time invariant systems; primarily from the classical viewpoint of Laplace transforms and a brief emphasis on the At the end of this course, students should be able to

CO1	To understand Mathematical Modelling of Systems
CO2	To understand Block diagram reduction, Time response characteristics.
CO3	To understand Introduction to stability, Routh Hurwitz stability criterion.
CO4	To understand Basics of control design, the proportional, derivative and integral actions.
CO5	To understand State space analysis and Design using State space
CO6	To understand Laplace Transforms, transfer functions, block diagram representation.

Course Outcomes (CO)- Sensors and Actuators (BTIEPE802B)

Course Description:

This course is designed with an aim of educating students in micro technology and its use to fabricate sensors and systems. The students will have an exposure to sensors and its importance in the real world. The students will also able to understand how to fabricate some of those sensors. Students will have an exposure towards how to fabricate the sensors and its application in real world. The students will provide an understanding on modern day micro sensors and micro actuators. At the end of this course, students should be able to

CO1	To understand Basics of Energy Transformation such as Transducers, Sensors and Actuators
CO2	Understanding of thin film physics: Application in MOSFET and its variants
CO3	Basic understanding of Photolithography for pattering layer. Detailed overview of Etching methods
CO4	Understanding of Sensor Interfacing with Microprocessor to build electronic system
CO5	Understanding various gas sensors: Optical gas sensor, Metal oxide semiconductor gas sensor, Field effect transistor gas sensor, Piezoelectric gas sensor, Polymer gas sensor, Nano-structured based gas sensors
CO6	Understanding basics of micro fluidics to assist Photo mask design using Clew in Software, pattern transfer techniques, device bonding techniques.