

Course Outcomes (CO) - Engineering Mechanics (BTES203)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Engineering Mechanics. Specific courses may emphasize certain outcomes or focus on particular aspects of Engineering Mechanics based on their curriculum and goals.

CO1	Determine resultant of various force systems.
CO2	To be able to draw the free body diagrams of mechanical components and systems.
CO3	Determine centroid, moment of inertia.
CO4	Determine reactions of beams, calculate forces in trusses using principles of equilibrium
CO5	Calculate position, velocity and acceleration of particle using principles of kinematics.
C06	Calculate position, velocity and acceleration of particle using principles of kinetics and Work, Power, Energy.

Course Outcomes (CO) - Basic Civil Engineering (BTES106)

Course Description:

The design, construction, and maintenance of the built environment, including public works like roads, bridges, canals, dams, airports, sewage systems, pipelines, building structural elements, fall under the broad category of Basic civil Engineering.

CO1	Understand basic different types of curve on the road and their Pre. survey
CO2	Perform setting of curves, buildings, culverts, tunnels etc
CO3	Comprehend different geodetic methods of surveying such as triangulation, trigonometric levelling
CO4	Comprehend modern advance surveying techniques
CO5	Students are able to calculate compute the area and earthwork for different works by using surveying instruments
C06	Students are able to do the surveying of different civil engineering projects

Course Outcomes (CO) - Mathematics - III (BTBSC301)

Course Description:

The course is intended to provide understanding of concepts of mathematics and its application to engineering. This course introduces the student to the second and higher order differential equations and their solution, function of a complex variable. This course is aimed study concept of

CO1	Solve engineering problems using the principles of solution of differential equations.
CO2	Understand analytic function of a complex variable and able to apply Cauchy integral theorem and residue theorem to solve contour integrations.
CO3	Use Fourier transforms and its inverse in practical applications of electronics engineering.
CO4	Apply Laplace transform and its inverse to solve initial value and other related problems.
CO5	Know basic statistical techniques required for electronics engineering.
CO6	To Under Stand Functions of Complex Variables (Integral calculus)

Course Outcomes (CO) - Mechanics of Solid (BTCVC302)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Mechanics of Solid, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Mechanics of Solid based on their curriculum and goals.

CO1	Describe the mechanical behaviour of engineering materials subjected to various types of stresses and compute the resulting strain and strain energy.
CO2	Analyse the bending of various types of beams under static loading conditions and compute the shear stress distribution for different cross sections of beams.
CO3	Show knowledge of principal planes, stresses and strains and analyse the elastic deformation of members and apply different theories of elastic failures.
CO4	Compute the torsion for the circular shaft and analyse the crippling load and equivalent length for various types of columns of different end conditions.
CO5	Compute the deflection of beams and shafts under static loading and stresses in thin walled cylindrical and spherical vessels.
C06	Perform failure analysis

Course Outcomes (CO) - Hydraulics-I (BTCVC303)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Hydraulics-I, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Hydraulics-I based on their curriculum and goals.

CO1	Describe fluid mechanics fundamentals, including concepts of mass and momentum conservation.
CO2	Apply the Bernoulli equation to solve problems in fluid mechanics.
CO3	Apply control volume analysis to problems in fluid mechanics.
CO4	Perform dimensional analysis for problems in fluid mechanics.
CO5	Explain of laminar and turbulent boundary layer fundamentals with examples.
CO6	An ability to apply the concepts developed for fluid flow for the design of notches and weirs.

Course Outcomes (CO) - Surveying I (BTCVC304)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Surveying I, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Surveying I based on their curriculum and goals.

CO1	Use the Theodolite along with chain/tape/compass on the field.
CO2	Applying geometry and trigonometric principals of basic surveying calculations
CO3	Able to control the accumulation of errors in projects.
CO4	Apply the knowledge of levelling in different operations in civil engineering projects.
CO5	Explain Basic surveying instruments and techniques
C06	Applying drawing techniques in the development of topographic maps

Course Outcomes (CO) - Building Construction (BTCVC305)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in building construction, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of building construction based on their curriculum and goals.

CO1	Understand the properties, uses, and selection of construction materials, including wood, concrete, steel, masonry, and various finishes.
CO2	Understand composition of concrete and effect of various parameters affecting strength
CO3	Learn different construction methods and techniques, including framing, concrete pouring, roofing, and interior finishing.
CO4	Learn about the structural systems used in building construction, including load-bearing walls, framing systems, and structural analysis.
CO5	Understand and adhere to safety protocols and practices on construction sites to ensure the well-being of workers and compliance with safety regulations.
CO6	Develop problem-solving skills to address construction-related challenges and issues that may arise during a project.

Course Outcomes (CO) - Engineering Geology (BTCVC306)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Engineering geology, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Engineering geology based on their curriculum and goals.

CO1	As a students in the Bachelor of Engineering (Civil Engineering) will undertake courses in geology Such as Rock and mineral.
CO2	Students are able to understand the different geological structures and their impact on civil engineering structure.
CO3	Students are able to decide the suitable site selection for civil engineering structures
CO4	Students are able to know the different geological hazards and its mitigation
CO5	Students are able to understand the different method of geological exploration
CO6	Students are able to identify the different rocks and minerals based on their property

Course Outcomes (CO) - Soft Skills Development (BTHM303)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Hydraulics-II, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Hydraulics-II based on their curriculum and goals.

CO1	Develop an ability to interact amicably with others.
CO2	Develop effective communication skills
CO3	Develop effective presentation skills.
CO4	Track their progress and know where they stand and know in advance how they'll be assessed.

Course Outcomes (CO) - Hydraulics-II (BTCVC401)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Hydraulics-II, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Hydraulics-II based on their curriculum and goals.

CO1	Apply differential equation of fluid mechanics. Apply the Boundary layer theory and compute drag and lift forces on submerged bodies.
CO2	Describe and apply the turbulent flow theory and compute velocity distribution in pipes.
CO3	Analyze uniform and critical flow in channels.
CO4	Investigate Gradually varied flow and assess hydraulic jump.
CO5	Describe impact of jet.
CO6	Describe working principles of pump and hydraulic turbine and demonstrate their characteristic curves.

Course Outcomes (CO) - Surveying II (BTCVC402)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Surveying II, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Surveying II based on their curriculum and goals.

CO1	Understand basic different types of curve on the road and their Pre. survey
CO2	Perform setting of curves, buildings, culverts, tunnels etc
CO3	Comprehend different geodetic methods of surveying such as triangulation, trigonometric levelling
CO4	Comprehend modern advance surveying techniques
CO5	Students are able to calculate compute the area and earthwork for different works by using surveying instruments
CO6	Students are able to do the surveying of different civil engineering projects

Course Outcomes (CO) - Structural Mechanics-I (BTCVC403)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in structural mechanics-I, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of structural mechanics -I based on their curriculum and goals.

CO1	Describe the concept of structural analysis, degree of indeterminacy.
CO2	Calculate slopes and deflection at various locations for different types of beams.
CO3	Identify determinate and indeterminate trusses and calculate forces in the members of trusses.
CO4	Perform the distribution of the moments the in continuous beam and frame.

Course Outcomes (CO) - Product Design Engineering (BTID405)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Product Design Engineering, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Product Design based on their curriculum and goals.

CO1	Create simple design of components or a system as a whole
CO2	Create design documents for knowledge sharing
CO3	Manage own work to meet design requirements
CO4	Work effectively in a team
CO5	Have basic knowledge of software such as Autodesk Fusion 360 or similar freeware
CO6	To understand Product design and Product marketing and specification

Course Outcomes (CO) - Basic Human Rights (BTHM3401)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Basic Human Right, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Basic Human Right based on their curriculum and goals.

CO1	Develop a comprehensive understanding of the international and national legal frameworks that govern human rights, including treaties, conventions, and constitutional provisions.
CO2	Identify and describe the core universal human rights principles, such as the right to life, liberty, equality, and freedom from discrimination.
CO3	Understand the historical development and evolution of human rights, including key historical events and figures that have shaped the human rights movement.
CO4	Develop the ability to analyze and critically evaluate human rights cases and issues from legal and ethical perspectives.
CO5	Acquire skills in researching human rights violations, documenting evidence, and reporting on human rights abuses in a clear and objective manner.
CO6	Develop a sense of ethical responsibility towards promoting and protecting human rights, both as individuals and as members of society.

Course Outcomes (CO) - Numerical Methods in Engineering (BTCVE404A)

Course Description:

Find the solution of the first order and second order equation with constant coefficient ¬ Find the summation of series finite difference techniques. Find the solution of ordinary differential equation of first order by Euler, Taylor and Runge-Kutta methods .Derive Least ¬ Squares curve fitting procedures, fitting a straight line, nonlinear curve fitting, Curve fitting by a sum of exponentials. Find the derivatives using Newton's forward difference formula, Newton's backward difference formula, Derivatives using central difference formulae, Stirling's interpolation formula, Newton's divided difference formula, Maximum and minimum values of a tabulated function. Derive Trapozoidal rule, Simpson's 1/3 rule, Simpson's 3/8 − rule, and Weddle's rules from General Quadrature formula and find the Euler − Maclaurin Formula of summation and The Euler transformation. ¬ Find the solution of linear systems by using Direct methods, Matrix inversion method, Gaussian elimination methods, Gauss-Jordan Method, Method of factorization, Solution of Tridiagonal Systems.

CO1	Acquire basic knowledge in solving interpolation with equal interval problems by various numerical methods. Estimate the missing terms through interpolation methods.
CO2	Develop skills in analyzing the methods of interpolating a given data, properties of interpolation with unequal intervals and derive conclusions, approximate a function using an appropriate numerical method.
CO3	Implement numerical methods for a variety of multidisciplinary applications and a variety of numerical algorithms using appropriate technology.
CO4	Use relevant numerical techniques for interpolation with equal and unequal intervals by using various central difference formulae and code a numerical method in a modern computer language.
CO5	Apply appropriate numerical methods to solve the problem with most accuracy. ¬
C06	Be able to derive Least – Squares curve fitting procedures, fitting a straight line, fitting a parabola, nonlinear curve fitting, Curve fitting by a sum of exponentials.

Course Outcomes (CO) – Design of Steel Structure (CVT501)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Design of Steel Structure, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Design of Steel Structure based on their curriculum and goals.

CO1	Recall and understand the fundamental of steel structures.
CO2	Calculate the plastic moment of different cross section and design of bolted and welded connections
CO3	Identify the different failure modes of steel tension and compression members and beams, and compute their design strength
CO4	Analyze & design the plate and gantry girder
CO5	Analyze and design of column bases.
CO6	Analyze and design of composite beams.

Course Outcomes (CO) - Structural Mechanics II (CVT502)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in structural mechanics II, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of structural mechanics II based on their curriculum and goals.

CO1	Analysing indeterminate in jointed trusses.
CO2	Have basic knowledge of concept of influence line
CO3	Have the basic understanding of principle and concept related to FEM.
CO4	Have basic knowledge of direct flexibility method
CO5	Have basic knowledge of direct stiffness method
C06	To understand various types of cable, bridges and arches

Course Outcomes (CO) - Geotechnical Engineering (CVT503)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Geotechnical engineering, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Soil Mechanics based on their curriculum and goals.

CO1	Know the basic principles of soil mechanics,
CO2	Describe various index / engineering properties of soil and measurements of the same.
CO3	Predict soil behaviour under the application of loads.
CO4	Solve problems in practice.
CO5	Understand stresses in soil and permeability and seepage aspects
CO6	Develop ability to take up soil design of various foundations

Course Outcomes (CO) - Concrete Technology (CVT504)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Concrete Technology, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Concrete Technology based on their curriculum and goals.

CO1	Understand concepts related to concrete technology which involves types and property of concrete and different materials.
CO2	Describe the properties and factors influencing the workability of fresh concrete.
CO3	Analyze the behaviour of fresh and hardened concrete by understanding composition of various types of concrete and various tests performed on concrete.
CO4	Analyze the need for special concretes by involving basic chemistry of fly ash, plasticizer, retarder, etc and its application at various situations.
CO5	Understand the basic difference between the conventional and non-destructive testing of concrete and its applications
CO6	To understand various types of properties of ingredient of concrete

Course Outcomes (CO) - Transportation Engineering (BTCVC505)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Transportation Engineering, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Transportation Engineering based on their curriculum and goals.

CO1	Comprehend various types of transportation systems and their history of the development
CO2	Comprehend to various types of pavements
CO3	Understand the principle involved in traffic engineering for the design of signal, parking and pedestrian facilities.
CO4	Design the pavements by considering various aspects associated with traffic safety measures.
CO5	Understand road safety and accidents studies involved
C06	Introduction to other modes of Transportation

Course Outcomes (CO) - Town and Urban Planning (CVE6-603)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Town and urban planning, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Town and urban planning based on their curriculum and goals.

CO1	Understand Town and urban planning and their essential attributes.
CO2	Understand the history of town planning i.e., Indus valley civilization, Vedic period, Buddhist period, Mughal period, British period and post-independence period.
CO3	Understand about various town planners and their works.
CO4	Understand various planning methods.
CO5	Identify elements of planning's and regulation of the same
CO6	Implement guidelines provided by standard authorities i.e. MRTP ACT

Course Outcomes (CO) - Design of Concrete Structure-I (CV 601)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Design of Concrete Structure-I. Specific courses may emphasize certain outcomes or focus on particular aspects of Design of Concrete Structure-I based on their curriculum and goals.

CO1	To explain the basic design philosophy behind the Working Stress method, limit state method
CO2	Analyze and design of singly and doubly reinforced section
CO3	Analyze and design of flange section
CO4	Analyze and design of shear and bond
CO5	Analyze and design of slab
CO6	Analyze and design of staircase

Course Outcomes (CO) - Foundation Engineering (CV 604)

Course Description:

In this course students are guided to apply the theory learnt in Foundation Engineering to the practical applications. They are introduced to the topics of bearing capacity of shallow foundations, deep foundations, etc. They are required to determine the relevant parameters necessary for prediction of bearing capacity, foundation design, design of pile foundations etc

CO1	Decide type of soil investigation methods needed before commencement of the construction.
CO2	Estimate bearing capacity of soil.
CO3	Predict soil behaviour under the application of loads and come up with appropriate solutions to foundation design queries.
CO4	To predict soil behavior under the application of loads and come up with appropriate solutions to foundation design queries.
CO5	Analyze the stability of slope by theoretical and graphical methods.
CO6	Analyze the results of in-situ tests and transform measurements and associated uncertainties into relevant design parameters.

Course Outcomes (CO) - Building Planning and Design (CV605)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Building Design and Drawing. Specific courses may emphasize certain outcomes or focus on particular aspects of Building Design and Drawing based on their curriculum and goals.

CO1	Learn building components, principles, methods, software's and codes of practices for planning and design of the building.
CO2	Apply knowledge of various building components and services to design and construction of buildings.
CO3	Prepare constructional detailed representation drawing of a building.
CO4	Analyze the planning laws and recommendations involved in planning, building drawings and architectural concepts of buildings
CO5	Design plans of different types of building components and to understand the drawing principles involved in the design.
CO6	Understand Various techniques for good acoustics

Course Outcomes (CO) - Project Management (CVE6-601)

Course Description:

Project management theory, terms and concepts are introduced in this course. Students will discover the project life cycle and learn how to build a successful project from pre-implementation to completion. It will introduce project management topics such as resources, costs, time constraints and project scopes. students will identify the resources needed for each stage, including involved stakeholders, tools and supplementary materials. Students will be able to provide internal stakeholders with information regarding project costs by considering factors such as estimated cost, variances and profits.

CO1	Understand various steps in project management different types of charts. Construct network by using CPM and PERT method.
CO2	Determine the optimum duration of project with the help of various time estimates.
CO3	Know the concept of engineering economics, economic comparisons, and linear break even analysis problems.
CO4	Understand the concept of total quality Management including Juran and Deming's philosophy.

Course Outcomes (CO) - Bridge Engineering (BTCVPE705I)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Bridge Engineering, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of building construction based on their curriculum and goals.

CO1	Understand components of bridges and its various types.
CO2	Understand site selection criteria and comprehend various forces acting on bridges.
CO3	Analyse bridge structures using different analysis techniques.
CO4	Understand the importance of different types of bridge bearings.
C05	Understand the design of bridges and it's suitability in construction
C06	Study the Substructure and superstructure of Bridges in detail

Course Outcomes (CO) - Professional Practice (BTCVC704

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Professional Practice, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Professional Practice based on their curriculum and goals.

CO1	Prepare quantity estimates for Buildings, roads & rails and canal structures as per specifications.
CO2	Draft detailed specifications and work out Rate Analysis for all works related to civil engineering projects
CO3	Ascertain the quantity of materials required for Civil engineering works as per specifications
CO4	Prepare cost estimate and valuation of civil engineering works
CO5	Prepare tenders & contract documents. Evaluate contracts and tenders in construction practice
CO6	Will able to value a property, price escalation recommendations.

Course Outcomes (CO) - Infrastructure Engineering (BTCVC702)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Infrastructure Engineering, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Infrastructure Engineering based on their curriculum and goals.

CO1	To Know about the basics and design of various components of railway engineering
CO2	To Understand the types and functions of tracks, junctions and railway stations.
CO3	To Classify bridges and assess their suitability.
CO4	To Describe methods of construction of various types of bridges, testing and maintenance of bridges.
CO5	To Explain operating principles and technical terms related to airport engineering, airport planning.
C06	To Understand the types and components of docks and harbors.

Course Outcomes (CO) - Construction Techniques (BTCVC703)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Infrastructure Engineering, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Infrastructure Engineering based on their curriculum and goals.

CO1	Understand the planning of new project with site accessibility and services required.
CO2	Comprehend the various civil construction equipment's
CO3	Familiar with layout of RMC plant, production, capacity and operation process
CO4	Recognize various aspect of road construction, construction of diaphragm walls, railway track construction etc.
CO5	To understand the construction concepts and importance of techniques associated to construction
CO6	To understand the involvement of both strategic and tactical decisions about appropriate technologies and the best sequencing of operations.

<u>Course Outcomes (CO) – Introduction to Earthquake Engineering</u> (BTCVOE706D)

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Earthquake Engineering, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Earthquake Engineering based on their curriculum and goals.

CO1	Capture complexities in earthquake resistant design of structures
CO2	Grasp Nature of earthquake vibration and associated forces on structures
CO3	Understand importance of designing the building to targeted seismic performance.
CO4	To understand the concept of earthquake impact on the environment
CO5	To study Principles of Earthquake Resistant Design (EQRD) and planning aspects
CO6	To understand the construction aspects of masonry and timber structures

<u>Course Outcomes (CO) – Design of Reinforced and Prestressed Concrete</u> <u>(BTCVC701)</u>

Course Description:

These course outcomes are intended to provide students with a well-rounded education in Design of Reinforced and Prestressed Concrete, covering both theoretical knowledge and practical skills needed for a successful career in the field. Specific courses may emphasize certain outcomes or focus on particular aspects of Design of Reinforced and Prestressed Concrete based on their curriculum and goals.

CO1	Design of axial load, uniaxial bending and biaxial bending in column
CO2	Design for torsion
СО3	Understand the reason for use of high strength concrete and steel, systems of prestressing and methods of prestressing
CO4	Analysis of stresses.
CO5	Analysis of losses in prestressed.
C06	Design of rectangular and symmetrical flange section